Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Long He

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail:
chemhelong@yahoo.com.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.028$
$w R$ factor $=0.070$
Data-to-parameter ratio $=13.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Aqua(2, 2^{\prime}-bipyridine- $\left.\kappa^{2} N, N^{\prime}\right)\left(\right.$ (L-malato- $\left.\kappa^{3} O, O^{\prime}, O^{\prime \prime}\right)$ copper(II)

In the title complex, $\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$, the chiral L-malate group, which acts as a tridentate ligand, the bidentate $2,2^{\prime}$-bipyridine ligand and the water molecule provide an octahedral coordination of the $\mathrm{Cu}^{\mathrm{II}}$ atom with strong JahnTeller distortion. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds stabilize the crystal packing.

Comment

Copper complexes with organic acids and other donor ligands are important for living things, being involved in a number of chemical and biochemical catalytic systems (King, 1994). The crystal structures of several copper-carboxylate complexes are known (Du et al., 2004; Hu et al., 2004; Li \& Xiao, 2004). However, the structural aspects of copper complexes containing chiral organic acids are notably less studied. In this paper, we report the synthesis and X-ray crystal structure of a new mononuclear copper-L-malate acid complex with $2,2^{\prime}$ bipyridine.

(I)

In the title compound, (I) (Fig. 1), the $\mathrm{Cu}^{\mathrm{II}}$ atom is sixcoordinated by the two N atoms from $2,2^{\prime}$-bipyridine, three O atoms from the chiral l-malate group and atom O6 from the water molecule. The bond lengths and angles around the Cu atom (Table 1) clearly show a distorted octahedral coordination environment caused by a strong Jahn-Teller effect; the equatorial $\mathrm{Cu}-\mathrm{N}$ and $\mathrm{Cu}-\mathrm{O}$ bond lengths[1.9264 (14)2.0090 (18) \AA] are substantially shorter than the axial $\mathrm{Cu}-\mathrm{O}$ bonds [2.4301 (18) and 2.468 (2) A $]$. The S configuration of the chiral C atom (C12) in (I) is identical to that in L -malic acid.
The crystal packing (Fig. 2) is stabilized by intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2).

Received 25 July 2005
Accepted 8 August 2005
Online 12 August 2005

Figure 1
View of (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Experimental

L-Malic acid ($270 \mathrm{mg}, 2.0 \mathrm{mmol}$) and copper basic carbonate $(240 \mathrm{mg}$, approximately 1.0 mmol) were dissolved in water $(10 \mathrm{ml})$ with stirring. An ethanol solution (4 ml) of 2, 2^{\prime}-bipyridine ($310 \mathrm{mg}, 2.0 \mathrm{mmol}$) was added to the solution with stirring. After filtration, the filtrate was allowed to stand at room temperature and single crystals suitable for X-ray analysis were obtained after two weeks. Analysis calculated: C 45.47, H 3.82, N 7.58\%; found: C 45.62, H 3.98, N 7.62\%. IR $\left(\mathrm{KBr}, \nu \mathrm{cm}^{-1}\right): 791,1315,1401,1557,1625,3246$.

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=369.81$
Monoclinic, $P 2_{1}$
$a=10.4874$ (6) £
$b=6.5998$ (3) \AA
$c=10.7986$ (4) \AA
$\beta=106.570(2)^{\circ}$
$V=716.38(6) \AA^{3}$
$Z=2$
$D_{x}=1.714 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5265
reflections
$\theta=3.7-27.5^{\circ}$
$\mu=1.56 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.30 \times 0.23 \times 0.09 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\text {min }}=0.657, T_{\text {max }}=0.869$
6910 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.070$
$S=1.11$
3102 reflections
225 parameters
H atoms treated by a mixture of independent and constrained refinement

Figure 2
The molecular packing of (I), viewed approximately along the a axis. Cbound H atoms have been omitted for clarity. Dashed lines indicate hydrogen-bonding interactions.

Table 1
Selected geometric parameters ($\left(\mathrm{A},{ }^{\circ}\right)$.

$\mathrm{Cu}-\mathrm{O} 1$	$1.9264(14)$	$\mathrm{O} 1-\mathrm{C} 11$	$1.267(3)$
$\mathrm{Cu}-\mathrm{O} 3$	$2.0090(18)$	$\mathrm{O} 2-\mathrm{C} 11$	$1.235(3)$
$\mathrm{Cu}-\mathrm{O} 5$	$2.4301(18)$	$\mathrm{O} 3-\mathrm{C} 12$	$1.438(3)$
$\mathrm{Cu}-\mathrm{O} 6$	$2.468(2)$	$\mathrm{O} 4-\mathrm{C} 14$	$1.254(3)$
$\mathrm{Cu}-\mathrm{N} 1$	$1.9850(19)$	$\mathrm{O} 5-\mathrm{C} 14$	$1.244(3)$
$\mathrm{Cu}-\mathrm{N} 2$	$1.988(2)$		
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 3$	$83.87(7)$	$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 2$	$175.88(9)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 5$	$88.45(9)$	$\mathrm{O}-\mathrm{Cu}-\mathrm{O} 6$	$166.12(7)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 6$	$100.98(9)$	$\mathrm{O} 5-\mathrm{Cu}-\mathrm{N} 1$	$86.73(8)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 1$	$174.12(13)$	$\mathrm{O}-\mathrm{Cu}-\mathrm{N} 2$	$104.38(7)$
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{N} 2$	$96.17(7)$	$\mathrm{O} 6-\mathrm{Cu}-\mathrm{N} 1$	$84.38(8)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 5$	$79.74(7)$	$\mathrm{O}-\mathrm{Cu}-\mathrm{N} 2$	$84.88(7)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{O} 6$	$91.05(7)$	$\mathrm{N} 1-\mathrm{Cu}-\mathrm{N} 2$	$81.81(8)$
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$	$98.55(8)$		

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}^{2}-\mathrm{H} 31 \cdots \mathrm{O}^{\mathrm{i}}$	$0.78(4)$	$1.84(4)$	$2.551(3)$	$151(4)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{H} 61 \cdots \mathrm{O}^{\mathrm{i}}$	$0.85(3)$	$1.90(3)$	$2.759(3)$	$179(4)$
$\mathrm{O}^{\mathrm{H}}-\mathrm{H} 62 \cdots \mathrm{O}_{2}{ }^{\text {ii }}$	$0.85(2)$	$1.95(2)$	$2.799(3)$	$175(3)$

Symmetry codes: (i) $x, y-1, z$; (ii) $-x, y-\frac{1}{2},-z$.
The hydroxyl H atom was located in a difference Fourier map and refined freely. The water H atoms were placed in idealized positions and refined with $\mathrm{O}-\mathrm{H}$ distances restrained to $0.85(3) \AA, \mathrm{H} \cdots \mathrm{H}$ distances of $1.39(1) \AA$ and $U_{\text {iso }}(\mathrm{H})=0.05 \AA$. The C-bound H atoms were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}$ distances of $0.93-0.98 \AA$ and with $U_{\text {iso }}(\mathrm{H})=1.2-1.5 U_{\text {eq }}(\mathrm{C})$.

metal-organic papers

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

References

Du, M., Cai, H. \& Zhao, X.-J. (2004). Acta Cryst. E60, m1139-m1141.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565-566
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Hu, R.-Z., Liu, Z.-D., Tan, M.-Y. \& Zhu, H.-L. (2004). Acta Cryst. E60, m946m947.
King, R. B. (1994). Encyclopedia of Inorganic Chemistry, pp. 829-869. New York: John Wiley \& Sons Ltd.
Li, X.-H. \& Xiao, H.-P. (2004). Acta Cryst. E60, m898-m900.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands TX 77381-5209, USA
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

